Milvus
Milvus is a database that stores, indexes, and manages massive embedding vectors generated by deep neural networks and other machine learning (ML) models.
This notebook shows how to use functionality related to the Milvus vector database.
Setup
You'll need to install langchain-milvus
with pip install -qU langchain-milvus
to use this integration.
%pip install -qU langchain_milvus
The latest version of pymilvus comes with a local vector database Milvus Lite, good for prototyping. If you have large scale of data such as more than a million docs, we recommend setting up a more performant Milvus server on docker or kubernetes.
Credentials
No credentials are needed to use the Milvus
vector store.
Initialization
- OpenAI
- Azure
- AWS
- HuggingFace
- Ollama
- Cohere
- MistralAI
- Nomic
- NVIDIA
- Fake
pip install -qU langchain-openai
import getpass
os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
pip install -qU langchain-openai
import getpass
os.environ["AZURE_OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import AzureOpenAIEmbeddings
embeddings = AzureOpenAIEmbeddings(
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],
openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
)
pip install -qU langchain-google-vertexai
from langchain_google_vertexai import VertexAIEmbeddings
embeddings = VertexAIEmbeddings(model="text-embedding-004")
pip install -qU langchain-aws
from langchain_aws import BedrockEmbeddings
embeddings = BedrockEmbeddings(model_id="amazon.titan-embed-text-v2:0")
pip install -qU langchain-huggingface
from langchain_huggingface import HuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
pip install -qU langchain-ollama
from langchain_ollama import OllamaEmbeddings
embeddings = OllamaEmbeddings(model="llama3")
pip install -qU langchain-cohere
import getpass
os.environ["COHERE_API_KEY"] = getpass.getpass()
from langchain_cohere import CohereEmbeddings
embeddings = CohereEmbeddings(model="embed-english-v3.0")
pip install -qU langchain-mistralai
import getpass
os.environ["MISTRALAI_API_KEY"] = getpass.getpass()
from langchain_mistralai import MistralAIEmbeddings
embeddings = MistralAIEmbeddings(model="mistral-embed")
pip install -qU langchain-nomic
import getpass
os.environ["NOMIC_API_KEY"] = getpass.getpass()
from langchain_nomic import NomicEmbeddings
embeddings = NomicEmbeddings(model="nomic-embed-text-v1.5")
pip install -qU langchain-nvidia-ai-endpoints
import getpass
os.environ["NVIDIA_API_KEY"] = getpass.getpass()
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
embeddings = NVIDIAEmbeddings(model="NV-Embed-QA")
pip install -qU langchain-core
from langchain_core.embeddings import DeterministicFakeEmbedding
embeddings = DeterministicFakeEmbedding(size=4096)
from langchain_milvus import Milvus
# The easiest way is to use Milvus Lite where everything is stored in a local file.
# If you have a Milvus server you can use the server URI such as "http://localhost:19530".
URI = "./milvus_example.db"
vector_store = Milvus(
embedding_function=embeddings,
connection_args={"uri": URI},
)
Compartmentalize the data with Milvus Collections
You can store different unrelated documents in different collections within same Milvus instance to maintain the context
Here's how you can create a new collection
from langchain_core.documents import Document
vector_store_saved = Milvus.from_documents(
[Document(page_content="foo!")],
embeddings,
collection_name="langchain_example",
connection_args={"uri": URI},
)
And here is how you retrieve that stored collection
vector_store_loaded = Milvus(
embeddings,
connection_args={"uri": URI},
collection_name="langchain_example",
)
Manage vector store
Once you have created your vector store, we can interact with it by adding and deleting different items.
Add items to vector store
We can add items to our vector store by using the add_documents
function.
from uuid import uuid4
from langchain_core.documents import Document
document_1 = Document(
page_content="I had chocalate chip pancakes and scrambled eggs for breakfast this morning.",
metadata={"source": "tweet"},
)
document_2 = Document(
page_content="The weather forecast for tomorrow is cloudy and overcast, with a high of 62 degrees.",
metadata={"source": "news"},
)
document_3 = Document(
page_content="Building an exciting new project with LangChain - come check it out!",
metadata={"source": "tweet"},
)
document_4 = Document(
page_content="Robbers broke into the city bank and stole $1 million in cash.",
metadata={"source": "news"},
)
document_5 = Document(
page_content="Wow! That was an amazing movie. I can't wait to see it again.",
metadata={"source": "tweet"},
)
document_6 = Document(
page_content="Is the new iPhone worth the price? Read this review to find out.",
metadata={"source": "website"},
)
document_7 = Document(
page_content="The top 10 soccer players in the world right now.",
metadata={"source": "website"},
)
document_8 = Document(
page_content="LangGraph is the best framework for building stateful, agentic applications!",
metadata={"source": "tweet"},
)
document_9 = Document(
page_content="The stock market is down 500 points today due to fears of a recession.",
metadata={"source": "news"},
)
document_10 = Document(
page_content="I have a bad feeling I am going to get deleted :(",
metadata={"source": "tweet"},
)
documents = [
document_1,
document_2,
document_3,
document_4,
document_5,
document_6,
document_7,
document_8,
document_9,
document_10,
]
uuids = [str(uuid4()) for _ in range(len(documents))]
vector_store.add_documents(documents=documents, ids=uuids)
['b0248595-2a41-4f6b-9c25-3a24c1278bb3',
'fa642726-5329-4495-a072-187e948dd71f',
'9905001c-a4a3-455e-ab94-72d0ed11b476',
'eacc7256-d7fa-4036-b1f7-83d7a4bee0c5',
'7508f7ff-c0c9-49ea-8189-634f8a0244d8',
'2e179609-3ff7-4c6a-9e05-08978903fe26',
'fab1f2ac-43e1-45f9-b81b-fc5d334c6508',
'1206d237-ee3a-484f-baf2-b5ac38eeb314',
'd43cbf9a-a772-4c40-993b-9439065fec01',
'25e667bb-6f09-4574-a368-661069301906']
Delete items from vector store
vector_store.delete(ids=[uuids[-1]])
(insert count: 0, delete count: 1, upsert count: 0, timestamp: 0, success count: 0, err count: 0, cost: 0)
Query vector store
Once your vector store has been created and the relevant documents have been added you will most likely wish to query it during the running of your chain or agent.
Query directly
Similarity search
Performing a simple similarity search with filtering on metadata can be done as follows:
results = vector_store.similarity_search(
"LangChain provides abstractions to make working with LLMs easy",
k=2,
expr='source == "tweet"',
)
for res in results:
print(f"* {res.page_content} [{res.metadata}]")
* Building an exciting new project with LangChain - come check it out! [{'pk': '9905001c-a4a3-455e-ab94-72d0ed11b476', 'source': 'tweet'}]
* LangGraph is the best framework for building stateful, agentic applications! [{'pk': '1206d237-ee3a-484f-baf2-b5ac38eeb314', 'source': 'tweet'}]
Similarity search with score
You can also search with score:
results = vector_store.similarity_search_with_score(
"Will it be hot tomorrow?", k=1, expr='source == "news"'
)
for res, score in results:
print(f"* [SIM={score:3f}] {res.page_content} [{res.metadata}]")
* [SIM=21192.628906] bar [{'pk': '2', 'source': 'https://example.com'}]
For a full list of all the search options available when using the Milvus
vector store, you can visit the API reference.
Query by turning into retriever
You can also transform the vector store into a retriever for easier usage in your chains.
retriever = vector_store.as_retriever(search_type="mmr", search_kwargs={"k": 1})
retriever.invoke("Stealing from the bank is a crime", filter={"source": "news"})
[Document(metadata={'pk': 'eacc7256-d7fa-4036-b1f7-83d7a4bee0c5', 'source': 'news'}, page_content='Robbers broke into the city bank and stole $1 million in cash.')]